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The development of four-pulse DEER as described, which has been published in the Journal of Magnetic
Resonance more than 10 years ago. The corresponding paper is an example where a slight advance, such
as adding a refocusing pulse, which in retrospect looks so simple, can have a remarkable impact on an
entire field of science. In our case it offered a simple way to exact measurements of distances between
defined species in the nanometer range. The current applications are mainly in determining structures
of proteins and nucleic acids.
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1. Introduction

This paper is primarily an example of cross-fertilization be-
tween NMR and EPR. It describes four-pulse double electron–elec-
tron resonance (DEER) based on the ingenious approach
introduced in Novosibirsk in the early 1980s by Milov, Salikhov
and Tsvetkov. It can measure dipole–dipole couplings between
electron spins [1,2] and was nicely demonstrated on a model sys-
tem by Larsen and Singel in the 1990s [3]. It was clear that com-
bined with site-directed spin labeling [4] this approach had
potential for measuring distances in the nanometer range, which
is of high importance in materials and life sciences alike. Yet it
was not used for determining such distances in previously un-
known structures. When Michael Hubrich set out to establish this
technique in our lab, I did not worry about details and, therefore in
our first paper on the subject we used the ‘conventional’ three-
pulse approach, two for excitation and detection and one for inver-
sion of the second spin [5].

Later, I realized that the conventional sequence, although based
on the ingenious idea of a Hahn-echo, ignored the dead-time fol-
lowing the first excitation pulse. A simple refocusing pulse follow-
ing this excitation, see Fig. 1 in our paper, generates a ‘dead-time
ss. All rights reserved.
free’ echo which can then be used even at negative evolution times
to invert the second spin. For an NMR person like me this sounded
very simple, as such refocusing is used throughout NMR these days
‘to clean up the mess’ generated by a simple excitation pulse. In
fact, in our first paper using the four-pulse DEER sequence [6],
we only stated that the limitations due to the dead-time can be
overcome by our ‘new’ four-pulse sequence, but we didn’t bother
discussing details. In addition to that paper, we of course presented
our work at conferences. Much to our surprise, the reaction of our
EPR colleagues was not at all enthusiastic. In fact some of them
claimed that the fourth pulse didn’t make any difference. This
encouraged us to submit a detailed description of our approach
to JMR. In this paper we thoroughly discussed the sequence and
described the analysis in both the time- and the frequency-domain,
performed by Gunnar Jeschke, who had in the meantime joined my
group and led the EPR-activities. In addition to demonstrating the
technique on a model compound with an end-to-end distance of
2.8 nm, we determined both the mean cluster size and the mean
distance between the clusters in disordered ionomers. Here the
signals from spins in the same cluster are completely invisible in
conventional DEER, see Fig. 8 in the paper.

The manuscript was handled by the late Arthur Schweiger as
Associate Editor and accepted without problems, but also without
special ‘praise’ by the reviewers. Why did nobody apparently pro-
pose this simple extension of the pulse sequence before? I think
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this was partly due to the technical difficulties associated with
pulse EPR. At that time everyone tried to keep the pulse sequences
as simple as possible, as additional pulses often generated prob-
lems. Moreover, it was virtually impossible, at least with our com-
mercial set, to generate p/2 and p pulses covering sufficient
spectral widths as ‘required’ in the four-pulse DEER sequence.
The situation reminded me of the early days of Fourier transform
deuteron NMR, where pulses covering the full spectral width of
the 2H-spectra were not available. Therefore, in our 1979 JMR pa-
per [7] showing the first undistorted 2H NMR spectrum covering
the full width recorded by FT methods we applied p/4 rather than
p/2 pulses as required by standard considerations. In our DEER pa-
per we used pulses of 32 ns throughout and didn’t even bother
commenting on the fact that these pulses were not p/2 and p-
pulses plotted in the figures and used in the discussion. In spite
of this, the results were convincing.

When we wrote that paper we did not anticipate the remark-
able impact it had on the EPR field. The four-pulse DEER sequence
proved to be remarkably robust and the technical advances in
pulsed EPR, including high-field applications, make this sequence
nowadays easy to use, even for newcomers in the field. Moreover,
Gunnar Jeschke’s detailed recipes for extracting distances and dis-
tance distributions [8,9] were essential in promoting this tech-
nique to the current state. Today, four-pulse DEER (or PELDOR)
can be considered a ‘standard technique’ of EPR spectroscopy.

In particular, DEER spectroscopy in combination with site-direc-
ted spin labeling [4,10] is extensively used for the study of struc-
ture and function of proteins [11,12] including their function as
carriers of small molecules [13], and nucleic acids [14]. Moreover
it is used to probe large, complex biomacromolecules and their
assemblies [15] and protein folding [16]. Combining DEER and
paramagnetic relaxation enhancement in high resolution NMR
seems especially promising as it provides simultaneous access to
intermediate and long-range distances in protein complexes [17].
Even the first in-cell measurements have recently been reported,
which may open up a way to study processes in vivo [18,19].

Dead-time free DEER spectroscopy has also made an impact in
the field of new materials and synthetic nanostructures, as it deliv-
ers valuable information in the very important distance range be-
tween 1.5 nm and �8 nm [20]. In solution, distances in this range
were not quantitatively accessible before DEER became available.
So far, DEER has mainly been used to study the size and/or shape
of synthetic nanostructures and supramolecular systems [20–22].
Furthermore, DEER has been employed to understand the complex
self-assembly of counterions surrounding polyions in strongly
charged polyelectrolyte systems [23,24].

Furthermore, developments starting from the four-pulse DEER
sequence made it possible to measure distances not only between
nitroxide radicals, but also between nitroxides and paramagnetic
transition metal ions like Cu2+ [25,26] or recently Gd3+ [27,28]
and even between transition metal ions [29–31]. DEER can now
also be measured and analyzed at higher fields (Q- and W-band),
with higher sensitivity and stronger orientation selection [32,33].
Furthermore, quantitative ‘spin counting’ is now a valuable tool
to judge efficiencies of self-assembly [34,35] and the effect of mul-
tispin effects on the DEER data has been characterized [35,36]. In
particular, these recent advances prove that beyond the use of
DEER in biophysics and materials science, there is continuing inter-
est of the magnetic resonance community to further develop this
method.

To conclude, four-pulse DEER as described in our paper is an
example where a slight advance, such as adding a refocusing pulse,
which in retrospect looks so simple, can have a remarkable impact
on an entire field of science. In our case it offered a simple way to
exact measurements of distances between defined species in the
nanometer range.
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